

Experience of global small sensor co-location comparison studies with AQMesh

Amanda Billingsley

Tom Townend

Environmental Instruments Ltd.

What is AQMesh?

- Emerged from MESSAGE project 2006-9 in UK
 - Potential for low cost sensors in the environment
- Developed in partnership with University of Cambridge
- Ambition to improve spatial resolution of air quality monitoring networks
- Small sensor system for ambient air quality monitoring
 - Practical instrument for long-term outdoor use
 - Cloud processing of sensor output with secure online data access
- Started measuring 5 gases: NO, NO₂, O₃, CO, SO₂

Ambient gas monitoring with AQMesh

- Electrochemical sensors
 - Alphasense B4
- v3.0 released for sale in 2013
 - NO, NO₂, O₃, CO, SO₂
- Started collecting global datasets comparing co-located reference / FEM readings
- Biggest issues:

QMesh @come

- Cross-gas effects
 - Particularly NO₂/O₃
- Effect of temperature

v3.0 performance (2013-14)

- Pollution events identified
- R² poor at short intervals, eg: 15 mins
- Some information captured
 - Source apportionment results similar for colocated reference and AQMesh
- Conclusion:
 - Not good enough

Reference equipment

NO/NO2/NOx (left to right) vs wind direction/speed, suggesting multiple sources.

Analysis carried out by Professor Rod Jones, University of Cambridge

Developments and public evaluation (2014-15)

- Key developments
 - Sun shield introduced
 - Breakthrough with ozone filter on NO₂ sensor
 - Sensor characterisation extended via ambient co-location with FEM
 - Improvements in calculations / 'algorithms' as a traceable version
 - v4.0
- Public studies
 - Citi-Sense
 - 200+ AQMesh pods
 - (Sensors not characterised at factory due to funding structure)
 - Various studies published
 - EUNetAir
 - Aveiro, Portugal
- In 2016 still significant temperature effects
- v4.1 commercially unreleased AI attempt to 'find the signal'

v4.0 results

(published on agmesh.com)

Typically

- NO₂, O₃ and CO R² 0.5 0.8
- NO R² > 0.8 (in most conditions)
- Example co-location Colorado
 - October to December 2015
 - NO R² 0.99
 - NO₂ R² 0.75
 - O3 R² 0.59
- Not yet consistent performance across the full range of conditions
- Local scaling against reference offering significant improvement in accuracy

NO2 results Sweden, December 2015

Testing resulted in R2 values of 0.83

Parameter	NO2
R2 Value	0.83

December 2015 – January 2016
Sweden
v4.0
15 minutes

Recent developments (v4.2.3)

- NO₂ sensor O₃-filtered and improved response at higher ambient temperatures
- Factory quality check, accuracy and precision tests
- Optimised electronic set-up and performance enhancements below LOD

Measurement	Limit of confidence	Typical precision to ref (R ²)	Typical mean pre-scaled accuracy (MAE)	
NO	< 5 ppb	>0.9	+/- 5 ppb	
NO ₂	< 10 ppb	>0.85	+/- 10 ppb	<u>Car</u>
NO _X	< 10 ppb	>0.9	+/- 10 ppb	See tech
03	< 5 ppb	>0.9	+/- 10 ppb	WW
СО	< 0.05 ppm	>0.8	+/- 0.3 ppm	
SO ₂	< 10 ppb	>0.7	+/- 10 ppb	
H ₂ S	< 5 ppb	>0.7	+/- 5 ppb	
CO ₂	< 1 ppm	>0.9	+/- 30 ppm	

See datasheet / tech spec on www.aqmesh.com

Now at the point where $R^2 < 0.8$ sets us looking at the performance comparison...

Measuring performance

- Critical for any comparison that the devices to be compared are located very close to each other
 - Multiple pods
 - Reference equipment
 - Diffusion tubes
- Beware reference readings low R² may result from poorly maintained stations or unratified data

See The Challenges and Benefits of Local Air Quality Monitoring on AQMesh.com

Data legitimacy through precision and accuracy

20 co-located pods

plotted against each

other

- 1. Do all pods in the same place measure the same?
- 2. Do pods measure the same as reference?

Limit of detection...or confidence?

- 'Limit of Detection' versus 'Limit of Confidence'
 - Sensors capable of detecting target gas down to Oppb
 - Interference can mask target gas signal
 - Temperature, humidity, electronic noise, interfering gases, etc
 - Limiting and compensating for this noise is an important factor in design of the product and algorithms
 - 'Limit of confidence'
 - Gas level below which in the least favourable conditions we are not confident distinguishing the gas signal
 - Below this value measurements are within a few ppb of the target gas value (accuracy) but precision is lower

AQMesh

• These values are still presented - important when averaging to longer periods

Current production version

v4.2.3

(Please visit Booth 42 or <u>www.aqmesh.com/performance</u> for a more leisurely review and more examples)

R ²		0.93
Accuracy (MAE)	PreScaled	Scaled
	1.73	0.45
Accuracy (RMSE)	PreScaled	Scaled
	2.42	0.65
Averaging interval		60 minute
Conditions		Cold
Region	Ν	1innesota, US
Location	Urba	n background
Date	Dec 20:	17 – Jan 2018
Processing version		v4.2.3

AQMesh PreScaled AQMesh Scaled FEM

R ²		0.89
Accuracy (MAE)	PreScaled	Scaled
	4.50	5.09
Accuracy (RMSE)	PreScaled	Scaled
	6.17	7.14
Averaging interval		60 minute
Conditions		Hot, humid
Region		London, UK
Location	L	Jrban roadside
Date		Apr – Jul 2016
Processing version		v4.2.3

R2		0.92
Accuracy (MAE)	PreScaled	Scaled
	3.71	3.70
Accuracy (RMSE)	PreScaled	Scaled
	5.22	5.04
Averaging interval		60 minute
Conditions		Hot, humid
Region	S	Southern USA
Location		Industrial
Date		June 2018
Processing version		v4.2.3

Hot/humid

ppb

12/18/2015 0:00

Hot/dry

		0.87							
uracy (MAE)	PreScaled	Scaled	700						
	335.25	27.25	600						
(RMSE)	PreScaled	Scaled	500				•		•
	349.30	37.01	led			8	>>		
g interval		60 minute	004 co 2005 co 2005 co						
S		Cold	₩ 300 V						
	We	estern Europe	200			•			
		Urban	100						
	De	cember 2015	0						
ng version		v4.2.3	0	100	200	300	400	500	600
						FLIVI			
							1		
							Λ_{Λ}		
						1 IV		MA	
			M		\bigwedge		\mathcal{M}	\sim	
			mar May		Ƴ \	\mathbf{V}	LA LA		
	M			\sim					
5 0.00 12/10/2015	0.00 12/11/2015	0.00 12/12/20		2015 0.00 1	12/14/2015 0:0	00 12/15	/2015 0.00	12/16/	2015 0.00

AQMesh Scaled FEM

R ²		0.70
Accuracy (MAE)	PreScaled	Scaled
	1.37	0.57
Accuracy (RMSE)	PreScaled	Scaled
	1.51	0.83
Averaging interval		60 minute
Conditions		Hot, humid
Region		London, UK
Location	ι	Jrban roadside
Date		Apr – Jul 2016
Processing version		v4.2.3

AQMesh PreScaled AQMesh Scaled FEM

New gas options: CO₂ and H₂S

- CO₂
 - NDIR sensor
 - Tested against Picarro reference on city rooftop
 - R² value of 0.93
 - MAE (mean absolute error) < 20ppm
 - Precision: pod-to-pod R² 0.98 and 0.99 for 20 co-located pods
 - Opportunity to identify combustion plumes
 - Proportions of pollutants

- H₂S
 - Electrochemical sensor
 - Tested at sewage / wastewater treatment plant
 - Against Honeywell SPM Flex
 - R² 0.87 over a measurement range of 0-150ppb

R ²		0.93
Accuracy (MAE)	PreScaled	Scaled
	1.26	1.27
Accuracy (RMSE)	PreScaled	Scaled
	3.62	3.57
Averaging interval		60 minutes
Conditions		Cold
Region		United Kingdom
Location	Wast	ewater treatment
Date	May	2017 – Sep - 2017
Processing version		v4.2.3

R2		0.93			
Accuracy (MAE)	PreScaled	Scaled			
	3.96	2.39			
Accuracy (RMSE)	PreScaled	Scaled			
	4.66	2.93	p		
Averaging interval	1 minute		h Scale		
Conditions	Hot, varia	AQMes			
Region	Western Europe		4		
Location	Cambridge, UK				
Date		June 2018			
Processing version		V4.2.3			

v5.0 (Q4 2018-)

- NO & NO₂
 - Improved compensation in hotter climates
 - Improved "out of the box" (pre-scaled) accuracy
- O₃ & CO
 - Improved "out of the box" accuracy
 - CO typical pre-scaled accuracy (MAE) ±50ppb
- H₂S introduced
- Sensor destabilisation identified
 - Extreme or fast-changing environments

	lesh
--	-------------

R ²		0.91								
Accuracy (MAE)	PreScaled	Scaled	80							
	2.63	2.16	70				•	/		
Accuracy (RMSE)	PreScaled	Scaled	60							
	3.80	3.02	50				/.			
Averaging interval		15 minute	ysə 40				•			
Conditions	Но	ot, dry, desert	AQN							
Region	Southern	California, US				•				
Location		Roadside	20		•					
Date	Feb 20	17 – Apr 2017			•					
Processing version		v5.0	-10.00 0.00	10.00 20.00	30.00 40	.00 50.00	60.00	70.00 80.0	00 90.00	
					FE	M				

R ²	0.83	
Accuracy (MAE)	PreScaled	Scaled
	3.20	3.10
Accuracy (RMSE)	PreScaled	Scaled
	4.15	3.94
Averaging interval	15 minute	
Conditions	Hot, dry, desert	
Region	Southern California, US	
Location	Roadside	
Date	Feb 2017 – Mar 2017	
Processing version	v5.0	

AQMesh PreScaled AQMesh Scaled FEM

QA/QC

- Three main points that we can manage
 - At manufacture
 - Some sensors rejected
 - Sensor and component variation
 - Factory scaling
 - At data delivery
 - Low confidence or erroneous data points flagged
 - Failed sensors
 - Environmental destabilisation
 - A growing list...
 - Users training: Standard Operating Procedure
- Looking forward to guidance from US and EU authorities

User protocols

- AQMesh Standard Operating Procedure
 - Recommended best practise for optimised accuracy
 - Comparison with co-located FEM to calculate slope and offset
 - 'Gold pod' procedure
 - Diffusion tubes
 - Slope and offset input on server and applied to readings going forward
- "Out of the box" / without local scaling
 - Valuable for many applications
 - Where FEM not available
 - Relative measurements are key
 - Accuracy still around ± 5-10ppb
 - "Pre-scaled"

Since 2013 AQMesh is or has been in use in...

- UK
- France
- Spain
- Belgium
- Netherlands
- Norway
- Sweden
- Finland
- Italy

- Australia
- Singapore
- Indonesia
- USA
- Brazil
- Canada
- Azerbaijan
- Israel
- Slovakia

- Malta
- Iraq
- Austria
- Germany
- South Africa
- China
- United Arab Emirates
- Ireland

- Trinidad
- Myanmar
- Serbia
- Czech Republic
- Nicaragua
- Saudi Arabia
- Slovenia
- Bangladesh

- Transport monitoring
 - Major road routes
 - Specific traffic corridors
 - Mitigation measures
 - Traffic tunnels, eg: UK, France, Switzerland
 - QA/QC challenge
 - Pedestrian subways
 - Monitoring around airports,
 - Saudi Arabia, (CU Heathrow study)
 - Ports UK (various), Rotterdam & Hamburg

- Urban hotspot identification / monitoring
 - Cities, towns
 - Around communities or schools
- Construction developments
 - Planning: before and after to measure impact
 - Oxford shopping centre
 - Targeted areas
 - Cambridge congested traffic corridor
- Construction activity
 - On-site dust and generator pollution
 - Surrounding area / off-site dust / emissions
- Industrial
 - Source apportionment around industrial sites, eg: oil facility: Azerbaijan, Iraq, USA
 - Mining: South Africa, Australia
 - "West and North-east shore of Myanmar by Ministry of Resources and Environmental Conservation. These areas are common for fisheries and cold storage seafood for export and some off-shore oil and gas stations."
 - Fence line alerts

- Smart cities
 - Hyperlocal network
 - London (C40), Minneapolis, Newcastle
 - Clean air zones
 - London Bridge, Tooley street
- Research projects
 - Variation in air quality at height
 - High rise building vents / windows
 - Impact of industrial stack emissions on nearby buildings
 - Assessment of impact of pollution mitigation measures
 - Green barriers
 - Road surface treatment
 - Impact of volcanic activity
 - Nicaragua, Hawaii
 - Complementing modelling
 - NILU and CERC papers
 - Distinguishing between local and regional / remote sources of pollution, eg: Cambridge

www.aqmesh.com/ cambridge

"We're seeing very encouraging results, with correspondences in excess of 0.7 and 0.8 for R2, and that's very good for something straight out of the box."

says Professor Rod Jones of the University of Cambridge Read more »

Spatial gradient implies local source in city.....

 \Rightarrow *Local* intervention possible

UNIVERSITY OF CAMBRIDGE No spatial gradient implies mainly regional source.....

⇒ <u>Regional</u> intervention required

AQE 2017, Telford, 25th May 2017

18

- Outdoor-indoor
 - Office buildings / HVAC management
 - Air flow management
 - Car dealer, Sweden
 - Industrial process impact
 - Inside vehicles
- Employee exposure
 - Unregulated generator emission
 - H2S in sewage plant
 - Diesel fumes classified as grade 1 carcinogen
- Mobile
 - Walking
 - Glasgow 'trolley' study looking at exposure close to ground; BBC study
 - On a bicycle
 - BBC Newsnight, (Cambridge University prototype)

Achievements and remaining challenges

- Achievements
 - Precision and accuracy of gas readings
 - Best performance from gas sensors
 - Understanding and managing limitations
 - Sensor destabilisation
 - Sensor failure
 - Optimising performance by application
 - 'Out of the box'
 - Local scaling and 'gold pod'
 - A practical monitoring tool
 - Wide usage global / applications
 - Also brings challenges...

 Remaining challenges primarily around QA/QC

Opportunities

- Continued refinement: sensors, processing and QA/QC
 - Metadata, remote diagnostics
- What information AQMesh offers right now, eg:
 - Identifying, understanding and managing sources of pollution
 - Measuring impact of mitigation measures
 - Integration of wider spatial networks
 - Through managed data validation
 - In combination with modelling
- Engagement with general discussion about data validity for local air quality networks

Questions?

