Proposed Best Practices for Quantifying, Siting, and Using Gas-Phase Sensors in Partnership with Communities

Presenter: Ashley Collier-Oxandale¹

Sharad Vikram², Michael Ostertag², Massimiliano Menarini², Evan Coffey¹, Jacob Thorson¹, Jill Johnston³, William Griswold², and Michael Hannigan¹

¹University of Colorado Boulder; ²University of California San Diego, ³University of Southern California

Air Sensors International Conference, September 12-14, 2018

Overview

- What can we learn about quantification from deployments in different locations?
- How transferable are calibrations between locations?
- What other tools, resources, and information (in addition to sensor quantification) could support partnerships with communities around sensor use?

A Need for Location Specific Calibrations

Colorado Model: $R_s/R_0 = p_1 + p_2(C) + T * (p_3 + p_6(C)) + p_4(H) + p_5(T_i)$

Los Angeles Model: $R_s/R_0 = p_1 + p_2(C) + T * (p_3 + p_6(C)) + p_4(H^{-1}) + p_5(T_i) + p_7(T * H^{-1}) + p_8(T_d)$

What's driving the differences across locations?

Complex, location specific temperature and humidity effects

background pollutants

Calibration Transferability

- Three MetaSense sensor systems at three reference sites
 - SD1: El Cajon (urban/suburban site)
 - SD2: Donovan (rural site, near the southern boarder)
 - SHF: Shafter (suburban/rural, near Bakersfield)

Reference Instruments:

- Donovan NO₂, O₃
- El Cajon NO₂, O₃, CO
- Shafter DMV NO₂, O₃, TNMHC, CO₂ (CO₂ – via Licor Analyzer maintained by CU, Boulder)

Tested different quantification models and robustness of models in new locations

Calibration Transferability

- Three MetaSense sensor systems at three reference sites
 - SD1: El Cajon (urban/suburban site)
 - SD2: Donovan (rural site, near the southern boarder)
 - SHF: Shafter (suburban/rural, near Bakersfield)

Reference Instruments:

- Donovan NO₂, O₃
- El Cajon NO₂, O₃, CO
- Shafter DMV NO₂, O₃, TNMHC, CO₂ (CO₂ – via Licor Analyzer maintained by CU, Boulder)

Tested different quantification models and robustness of models in new locations

Test Descriptions

Models

- Multiple Linear Regression (MLR)
- Neural Network 2 layer (NN2)
- Neural Network 4 layer (NN4)
- Random Forests (RF)

Levels (units – ppb)

- 0: training and testing on one location
- 1: training on 1 location, testing on another
- 2: training on 2 locations, testing on the third
- 3: training and testing across all locations

Transferability Results – O3 (electrochemical)

Models

- Multiple Linear Regression (MLR)
- Neural Network 2 layer (NN2)
- Neural Network 4 layer (NN4)
- Random Forests (RF)

Levels (units – ppb)

- 0: training and testing on one location
- 1: training on 1 location, testing on remaining 2
- 2: training on 2 locations, testing on the 3rd
- 3: training and testing across all locations

Transferability Results – NO2 (electrochemical)

Models

- Multiple Linear Regression (MLR)
- Neural Network 2 layer (NN2)
- Neural Network 4 layer (NN4)
- Random Forests (RF)

Levels (units – ppb)

- 0: training and testing on one location
- 1: training on 1 location, testing on remaining 2
- 2: training on 2 locations, testing on the 3rd
- 3: training and testing across all locations

Observations:

Observations:

• Over-predictions (particularly in MLR)

Observations:

- Over-predictions (particularly in MLR)
- Relatively large variance

Observations:

- Over-predictions (particularly in MLR)
- Relatively large variance
- Underpredictions at high levels

Observations:

- Over-predictions (particularly in MLR)
- Relatively large variance
- Underpredictions at high levels
- *MLR and NN(2) seem more robust across new locations*

Adding a Second Calibration Location (Level 2) Level 1 Level 1 Level 2

15

The Potential for Transferability

- Model: Neural Net (2-layer); Testing: Shafter (SHF)
- Level 1: R² = 0.76; RMSE = 18.1 ppb; Mean Bias = 15.3 ppb
- Level 2: R² = 0.82; RMSE = 15.9 ppb; Mean Bias = 13.3 ppb

The Potential for Transferability

 Level 1 (training on one location and testing on a second location, using one site in San Diego and the Shafter site -> models indicative of overall ozone trends (differing)

Sensor Deployments with Communities

- Tools/resources such as MOUs valuable
- Need for more guidelines/best practices
 - Comparing building and neighborhood-scale variability
 - Five sensor systems, around a building; three additional systems on nearby buildings

Building-Scale Variability – Observations

Across neighborhood sites (CO₂) Week 0 Data Week 2 Data B1 vs. N1 (R = 0.94, slope = 1.01) B1 vs. N1 (R = 0.96, slope = 1.08) B1 vs. N2 (R = 0.93, slope = 1.24) + B1 vs. N2 (R = 0.98, slope = 1.31) B1 vs. N3 (R = 0.89, slope = 1.06) B1 vs. N3 (R = 0.96, slope = 1.05) 650 650 800 (mdd ²550 500 500 %) ش⁶⁰⁰ (co₂1 550 ŝ 500 øð Pods N1, N2, Ŕ 450 450 ź 월 400 400 **Co-located** Deployed 350 350 350 400 450 500 550 600 65 350 400 450 500 550 600 650 Pod B1 (CO, ppm) Pod B1 (CO, ppm)

Across paired building sites (CO₂)

Across neighborhood sites (O_3)

19

Pod B1

Potential Implications for Siting

• Variability primarily driven by short-term enhancements (or depletions)

Building Site

SMALL, NEIGHBORHOOD ROAD

B5

NARROW PILEY

• Likely nearby emission sources

B1

~130'

BUSIER RORDWAY

from Collier-Oxandale et al., 2018

Potential Implications for Siting

Conclusions

Regarding calibrations

- Training in 2 locations vs 1 can improve models, though at the cost of more effort
- MLR and NNs seem to provide more robust results, though at the cost of a higher uncertainty
- NEED: Methods for evaluating trustworthiness of data

Regarding siting

- Siting seems to be more important for high-time resolution data or near-source, neighborhood-scale studies
- NEED: More case studies and examples would help build broader situationally-specific knowledge

Best-practices can improve data quality thus better support community-based research

Acknowledgements

Co-authors: Sharad Vikram, William G. Griswold, Massimiliano Menarini, Michael Ostertag, Jill Johnston, Jacob Thorson, and Michael Hannigan

Hannigan Lab (CU Boulder, current and former): Joanna Gordon Casey, Evan Coffey, Kyle Karber, Ricardo Piedrahita, Jake Thorson, Nicholas Masson, Kira Sadighi, Drew Meyers, David John Pfotenhauer, Sarah Toth, and many others

MetaSense Project Partners (UC San Diego): William G. Griswold, Tajana Rosing, Sanjoy Dasgupta, Kevin Patrick, Massimiliano Menarini, Christine S. Chan, Sharad Vikram, and Michael Ostertag

Partners at USC: Jill Johnston and Wendy Gutschow

Community and other Collaborators: Nicole Wong (Redeemer Community Partnership), and Sandy Navarro, Esperanza Community Housing, William Flores, Bhavna Shamasunder (Occidental College), Sue Chiang & Michael Lucia (Center for Environmental Health) and Gus Aguirre, Hannah Halliday & the Native Trailer Team (Penn State)

Regulatory partners: San Diego Air Pollution Control District, San Joaquin Valley Air District & California Air Resources Board, South Coast Air Quality Management District, and Colorado Department Public Health and the Environment

Funding: MetaSense Project, NSF grant CNS-1446912, NSF-SRN AirWaterGas CBET: 1240584,