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Overview

« What can we learn about quantification from deployments in
different locations?

e How transferable are calibrations between locations?

o What other tools, resources, and information (in addition to
sensor quantification) could support partnerships with
communities around sensor use?



A Need for Location Specific Calibrations
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What'’s driving the differences across locations?
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Calibration Transferability

« Three MetaSense sensor systems at three
reference sites
« SD1: El Cajon (urban/suburban site)
« SD2: Donovan (rural site, near the southern boarder)
« SHF: Shafter (suburban/rural, near Bakersfield)

Reference Instruments:
* Donovan — NO,, O,

- NO,, 05, CO
» Shafter DMV - NO,, O;, TNMHC, Tested different
CO, (CO, — via Licor Analyzer > .
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Test Descriptions

Models

« Multiple Linear Regression (MLR)
« Neural Network — 2 layer (NN2)
« Neural Network — 4 layer (NN4)
« Random Forests (RF)

Levels (units — ppb)

0: training and testing on one
location

1. training on 1 location, testing
on another

2: training on 2 locations, testing
on the third

3: training and testing across all
locations

Training Testing
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Training Testing
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Transterability Results — O3 (electrochemical)
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Transterability Results — NO2 (electrochemical)
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Comparing a calibration
within the same city to
calibrating in another
part of the state

Observations:
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Comparing a calibration
within the same city to
calibrating in another
part of the state

Observations:

« Over-predictions
(particularly in MLR)
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Comparing a calibration
within the same city to
calibrating in another
part of the state

Observations:

 Over-predictions
(particularly in MLR)

* Relatively large variance

« Underpredictions at high
levels
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Comparing a calibration
within the same city to
calibrating in another
part of the state

Observations:

 Over-predictions
(particularly in MLR)

* Relatively large variance

 Underpredictions at high
levels

o« MLR and NN(2) seem
more robust across new
Jocations
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Level 1

Adding a Second Calibration Location (Level 2) tew

Testing: SDT

Testing: SHF

Testing: SD2

Reference

w | * Level1
* Level 1

-—-1:1

Level 2

100

_=i“

100
O, (reference) 15



100
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The Potential for Transferability

« Model: Neural Net (2-layer); Testing: Shafter (SHF)

 Level 1: R? = 0.76; RMSE = 18.1 ppb; Mean Bias = 15.3 ppb
« Level 2: R? = 0.82; RMSE = 15.9 ppb; Mean Bias = 13.3 ppb

0

.1_|1'|,H

l'M ,“H 1‘ f‘ Hl\

Mt I\

| [ ‘ \

A

1
“ h’l "i |rr| ||”i | v

W\“ﬂ

n

— Reference

— Level 1 Fitted Data
— Level 2 Fitted Data

m
Hhmm%hwuﬁwﬂ

H\

10/22

10/27

11/01

11/06

11111

11/16

11/21

11/26

12;’01

12!06

12/11

16



The Potential for Transferability

* Level 1 (training on one location and testing on a second location, using one site
in San Diego and the Shafter site -> models indicative of overall ozone trends
(differing)
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Sensor Deployments with Communities

* Tools/resources such as MOUs valuable

« Need for more guidelines/best practices
« Comparing building and neighborhood-scale variability

* Five sensor systems, around a building; three additional
systems on nearby buildings

Building Site

Neighborhood Sites

2z
V4 SMALL, NEIGHBORHOOD ROAD




Building-Scale Variability — Observations

Across neighborhood sites (CO,)
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Potential Implications for Siting
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Potential Implications for Siting

Correlation between O; and CO, Differences Differences in O;only Differences in CO, only
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Conclusions

Regarding calibrations
« Training in 2 locations vs 1 can improve models, though at the cost of more effort

« MLR and NNs seem to provide more robust results, though at the cost of a higher
uncertainty

« NEED: Methods for evaluating trustworthiness of data

Regarding siting
« Siting seems to be more important for

high-time resolution data or near-source,
neighborhood-scale studies

« NEED: More case studies and examples
would help build broader situationally-specific
knowledge

Best-practices can improve data quality
thus better support community-based research
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