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Overview

• What can we learn about quantification from deployments in 
different locations?

• How transferable are calibrations between locations?

• What other tools, resources, and information (in addition to 
sensor quantification) could support partnerships with 
communities around sensor use?
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A Need for Location Specific Calibrations 
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Colorado (rural)

Τ𝑅𝑠 𝑅0 = 𝑝1 + 𝑝2 𝐶 + 𝑇 ∗ 𝑝3 + 𝑝6(𝐶) + 𝑝4 𝐻 + 𝑝5(𝑇𝑖)

Τ𝑅𝑠 𝑅0 = 𝑝1 + 𝑝2 𝐶 + 𝑇 ∗ 𝑝3 + 𝑝6(𝐶) + 𝑝4 𝐻−1 + 𝑝5 𝑇𝑖 + 𝑝7 𝑇 ∗ 𝐻−1 + 𝑝8(𝑇𝑑)

Colorado Model:

Los Angeles Model:

Los Angeles (urban)

RMSE (ppm) R2

Training 0.27 0.63

Testing 0.38 0.45

RMSE (ppm) R2

Training 0.15 0.82

Testing 0.16 0.76

from Collier-Oxandale et al., 2018



What’s driving the differences across locations? 
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Cross-sensitivities and 
differing mixtures of 
background pollutants  

Complex, location specific 
temperature and humidity 
effects

from Collier-Oxandale et al., 2018



Calibration Transferability

• Three MetaSense sensor systems at three 
reference sites 

• SD1: El Cajon (urban/suburban site)

• SD2: Donovan (rural site, near the southern boarder)

• SHF: Shafter (suburban/rural, near Bakersfield)
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Tested different 
quantification 
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robustness of 
models in new 
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Test Descriptions  

7

Models 

• Multiple Linear Regression (MLR)

• Neural Network – 2 layer (NN2)

• Neural Network – 4 layer (NN4)

• Random Forests (RF)

Levels (units – ppb)

• 0: training and testing on one 
location 

• 1: training on 1 location, testing 
on another

• 2: training on 2 locations, testing 
on the third

• 3: training and testing across all 
locations  

Location 1 Location 2 Location 3

Location 1 Location 2 Location 3

Location 1 Location 2 Location 3

Location 1 Location 2 Location 3

Testing Training 

Testing Training 

Testing Training 

Testing Training 



Transferability Results – O3 (electrochemical) 
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Transferability Results – NO2 (electrochemical)  
Models 

• Multiple Linear Regression (MLR)

• Neural Network – 2 layer (NN2)

• Neural Network – 4 layer (NN4)

• Random Forests (RF)

Levels (units – ppb)

• 0: training and testing on one 
location 

• 1: training on 1 location, testing 
on remaining 2

• 2: training on 2 locations, testing 
on the 3rd

• 3: training and testing across all 
locations  
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MLR NN2

NN4 RF



Level 1 Tests  Comparing a calibration 
within the same city to 
calibrating in another 
part of the state

Observations:
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Level 1 Tests  
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Level 1 Tests  

14

Comparing a calibration 
within the same city to 
calibrating in another 
part of the state

Observations:

• Over-predictions 
(particularly in MLR)

• Relatively large variance

• Underpredictions at high 
levels

• MLR and NN(2) seem 
more robust across new 
locations



Adding a Second Calibration Location (Level 2) 
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Testing: SD1

Testing: SHF

Testing: SD2

Level 1
Level 1
Level 2

Reference 



The Potential for Transferability   

• Model: Neural Net (2-layer); Testing: Shafter (SHF)

• Level 1: R2 = 0.76; RMSE = 18.1 ppb;  Mean Bias = 15.3 ppb

• Level 2: R2 = 0.82; RMSE = 15.9 ppb; Mean Bias = 13.3 ppb
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The Potential for Transferability 

• Level 1 (training on one location and testing on a second location, using one site 
in San Diego and the Shafter site -> models indicative of overall ozone trends 
(differing)  
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Sensor Deployments with Communities

• Tools/resources such as MOUs valuable 

• Need for more guidelines/best practices 
• Comparing building and neighborhood-scale variability 

• Five sensor systems, around a building; three additional 
systems on nearby buildings 
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Building-Scale Variability – Observations  
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Co-located Deployed 

Co-located Deployed 

Co-located Deployed 

Across neighborhood sites (CO2)

Across paired building sites (CO2)

Across neighborhood sites (O3)

Across paired building sites (O3)

Co-located Deployed 

from Collier-Oxandale 
et al., 2018



Potential Implications for Siting

• Variability primarily 
driven by short-term 
enhancements (or 
depletions)

• Likely nearby 
emission sources
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from Collier-Oxandale et al., 2018



Potential Implications for Siting

• Difference between
sites B1 and B5

• Data suggests 
multiple sources 
responsible  
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from Collier-Oxandale et al., 2018



Conclusions  

Regarding calibrations 

• Training in 2 locations vs 1 can improve models, though at the cost of more effort

• MLR and NNs seem to provide more robust results, though at the cost of a higher 
uncertainty 

• NEED: Methods for evaluating trustworthiness of data

Regarding siting 

• Siting seems to be more important for 
high-time resolution data or near-source, 
neighborhood-scale studies

• NEED: More case studies and examples 
would help build broader situationally-specific
knowledge
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Best-practices can improve data quality 
thus better support community-based research  
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