Assessment of the Performance of NO and NO₂ low cost sensors over extended time periods in a real world application

Alessandro Bigi¹, Michael Mueller², Stuart K. Grange³, Grazia Ghermandi¹, Christoph Hueglin²

¹ "Enzo Ferrari" Department of Engineering, University of Modena and Reggio Emilia, I-41125, Modena, Italy
² Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Duebendorf, Switzerland
³ Department of Chemistry, University of York, York, YO10 5DD, United Kingdom

presentation is based on A. Bigi et al., AMT (2018)

Motivation

- Low-cost sensors (LCS) are highly attractive
- See WMO (2018) for possibilities and limitations of LCSs

• Can LCSs be used for mapping of air pollutants (in cities) ?

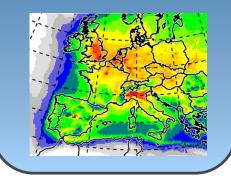
Low-cost sensors for the measurement of atmospheric composition: overview of topic and future applications valid as of May 2018

Editors: Alastair C. Lewis, Erika von Schneidemesser and Richard E. Peltier

Motivation – mapping of air pollution (in cities)

Dispersion models

- ✓ Regional scale transport _____
- ✓ Hourly resolution
- ✓ Simulations of few years
- Metrics averaged over the city
- 🗶 No urban canopy

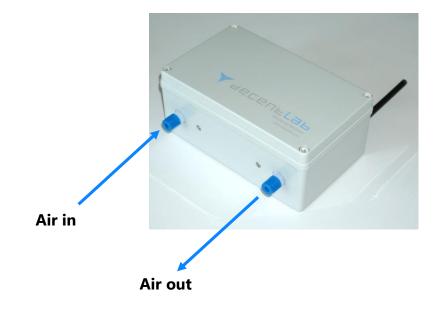


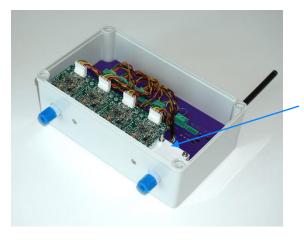
from A. Berchet, Empa

Statistical models

- ✓ Few meters of resolution
- ✓ Accurate and low computation cost
- Relying on numerous in-situ observations
 No emission sector separation

AirCube (AC) Sensor Units (DecentLab)





PTFE manifold and blower for active ventilation

- 2 NO Alphasense B4 electrochemical sensors
- 2 NO₂ Alphasense B43F electrochemical sensors
- rH/ Temp Sensirion STH21
- Battery powered
- GSM or LoRa communication

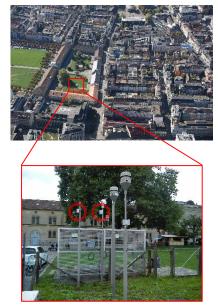
Sensor Calibration and Deployment

Calibration Apr 12 – Jul 6, 2017 Haerkingen, rural/traffic

Calibration (training) dataset

Deployment Jul 30 – Dec 5, 2017

Zurich, urban



Lausanne, urban/traffic

Deployment (test) dataset

Christoph.Hueglin@empa.ch

Air Sensors International Conference 2018 | Oakland | 12-14 September 2018

5

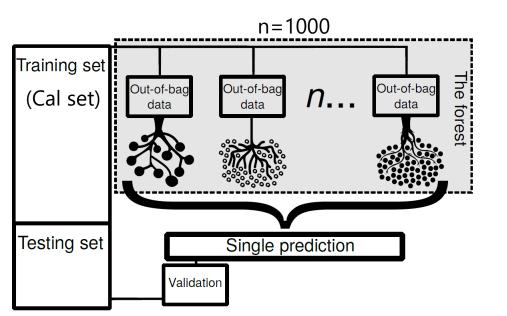
Calibration Models

Method	
Linear Models (LM)	LM
Robust Linear Models (RLM)	RLM
Random Forest Regression (RF)	RF
Support Vector Regression (SVR)	SVR (see Bigi et al. AMT 2018)

Target variable	Signal reference instrument
Explanatory variables	V _{Sensor A} , V _{Sensor B} , (V _{Sensor A} +V _{Sensor B})/2, T _{AC} , RH _{AC} , DRH _{t AC} , V _{Sensor Co-Pollutant}
Interactions	\checkmark
Time resolution	10 min
Number observations	8'315 – 11'454 (calibration/training) 16'535 – 17'083 (deployment/test)

AC:	AirCube Sensor Unit
DRH _{t AC} :	see Mueller et al., AMT (2017)

Random Forest Model



Conceptual diagram of a random forest model

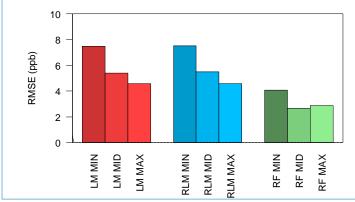
Tuning of RF's model parameters was conducted

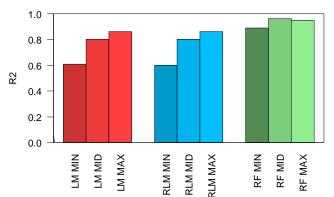
- Measurement at the Basel St. Johann reference site from March 6 – Aug 13, 2018
- Split of measurements in training (67%) and testing (33%) data sets, 3-fold cross-validation

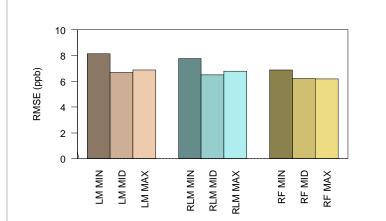
Grange et al ACP (2018)

Goodness-of-Fit Metrics for NO₂ (AC009 – AC012)

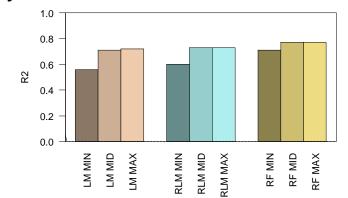
Mean of models using only one NO₂ sensor in AC (n=8) - Calibration data set







- Deployment data set



Calibration data for NO₂ sensor A in AC 012

Raw signal

RLM MID $NO_2 = NO_{2A} + T + RH + DRH60 + NO_{2A} + T$

RF MID $NO_2 = f(NO_{2A}, T, RH, DRH60)$ nodesize= 30

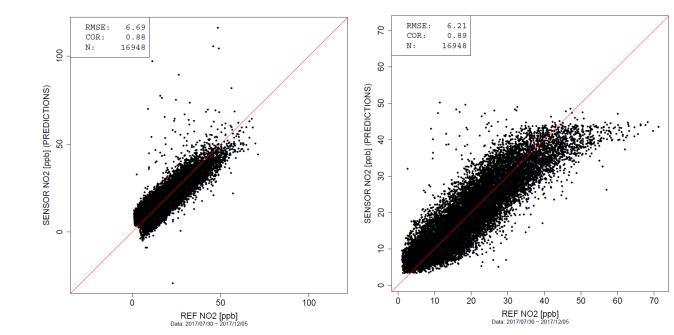
8 80 5.55 RMSE 2.79 RMSE COR : 0.89 0.98 COR: N : 11350 N : 11350 60 80 09 SENSOR NO2 [ppb] (MODEL FIT) SENSOR NO2 [ppb] (MODEL FIT) 20 40 SENSOR NO2 [mV] (RAW) 20 40 40 20 0 0 -20 20 0 -20 20 40 60 80 0 -20 40 60 80 20 60 0 40 REF NO2 [ppb] REF NO2 [ppb] Data: 2017/04/12 - 2017/07/06 REF NO2 [ppb]

Data: 2017/04/12 - 2017/07/06

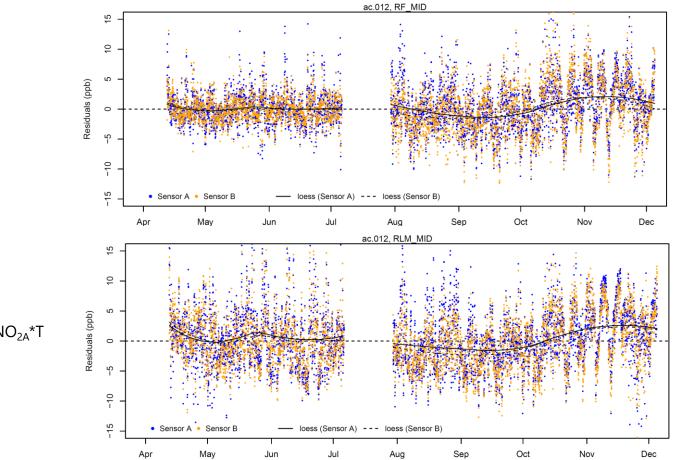
Scatterplot for NO₂ sensor A in AC 012 during Deployment

RLM MID NO₂ = NO_{2A}+T+RH+DRH60 + NO_{2A}*T $\begin{array}{l} \mathsf{RF} \ \mathsf{MID} \\ \mathsf{NO}_2 = \mathsf{f}(\mathsf{NO}_{2\mathsf{A}}, \mathsf{T}, \mathsf{RH}, \mathsf{DRH60}) \end{array}$

nodesize= 30



Hourly residuals (NO_{2 reference} – NO_{2 sensor}), e.g. AC 012



 $NO_2 = f(NO_{2A}, T, RH, DRH60)$ nodesize=30

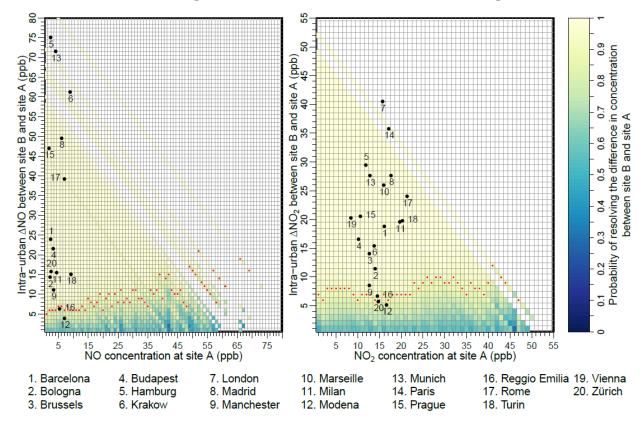
RLM MID

RF MID

 $NO_2 = NO_{2A} + T + RH + DRH60 + NO_{2A} T$

Probability of resolving intra-urban difference in NO and NO₂

site A: urban background, site B: urban hotspot (e.g. traffic)



Bigi et al AMT (2018)

- Air sensors need individual calibration (e.g. co-location to reference instruments)
- Different calibration algorithms have been tested. Random Forest (RF) regression showed the best performance
- Data quality for RF models has during deployment been lower than during calibration (Overfitting?)
 - ⇒ Model parameters need to be carefully chosen and calibration models should be validated (cross-validation, use at different reference site, ...)
- Sensor drift was not the limiting factor for data quality during deployment
- Measurement error of tested electrochemical sensors as determined in a real world application is around 6 ppb for both NO and NO₂ (Bigi et al. 2018)

Thank you !

Many thanks to

- Swiss National Science Foundation (International Short Visit Grant IZK0Z2-174969)
- Anthony Wild for provision of the Wild Fund Scholarship
- Markus Camenzind for data from Basel St. Johann