

Wireless Distributed Environmental Sensor Networks for Air Pollution Measurement: The Promise and the Current Reality

David Broday Faculty of Civil and Environmental Engineering Technion - Israel Institute of Technology

ASIC 2018, Oakland, CA

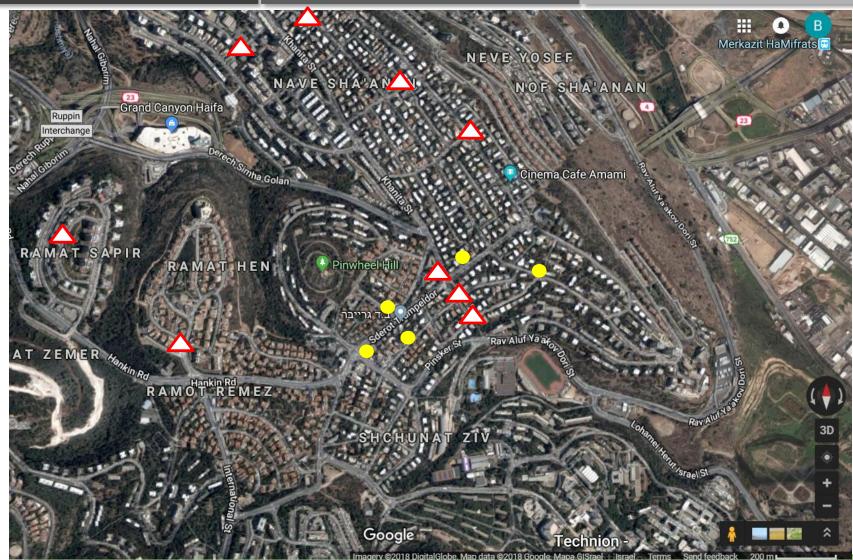
What Have We Learnt So Far? (thanks to all the previous presenters !)

- New miniature cheap sensors for APs are here (to stay)
- They carry a lot of promise (yet to be delivered)
- ... but have a lot of problems (childhood diseases)
- … and are NOT maintenance free (require periodical "care" & sophisticated data processing) ⇒ tailored applications
- General agreement: lab calibration is insufficient ⇒ field calibration
- Collocation calibration is sub-optimal ⇒ *in-situ* calibration is probably advantageous

What Have We Learnt So Far? (thanks to all the previous presenters !)

Sensor readings are affected by:

- Meteorological conditions (T, RH, wind speed & direction)
- Land use/ land cover (vegetation/ canopy/ greenness, urban landscape, proximity to sources/roads)
- Environmental conditions (pollutant levels, cross sensitivity/ interference by pollutant mixtures)
- \Rightarrow Particle sensors are more reliable



Are We Interested in

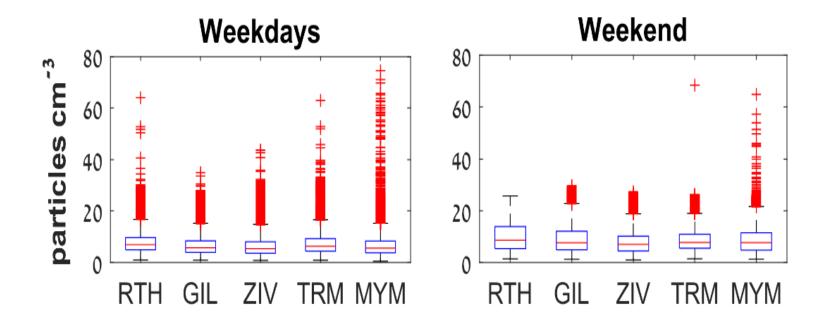
- intra- (rather than inter-) neighborhood variability?
- calibration during deployment (continuous reporting)?
- \Rightarrow Calibration on-the-fly/ N2N (to ref.) OR to the sensor mean
- source apportionment/ allocation?
- ⇒ Neighborhood "common" levels (≠ urban background ≠ long range transport levels)
- specific applications?
- providing useful data products?
- \Rightarrow Set feasible expectations and "educate" the users

What Can We Learn about Our Neighborhood Using a WDESN ?

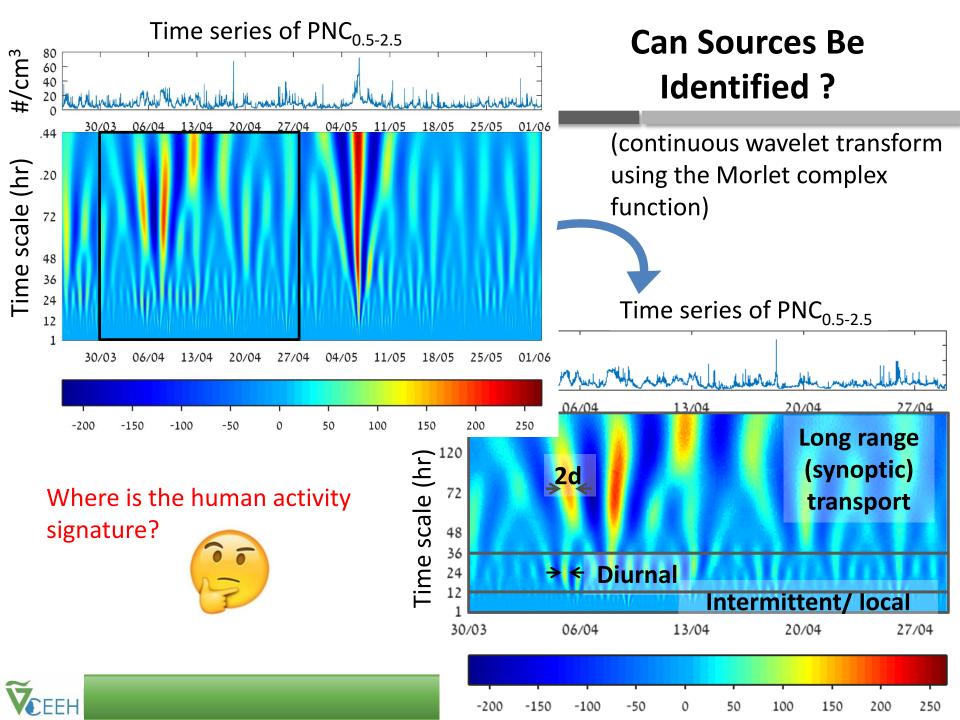
1st Example (Fine PNC)

Inter-nodal consistency	During collocation	During deployment		
Correlation (r)	0.98-0.99	0.9-0.96		
RMS difference (%)	8-16			
RMS difference after calibration* (%)	3.5 -11	19.5-33.6		

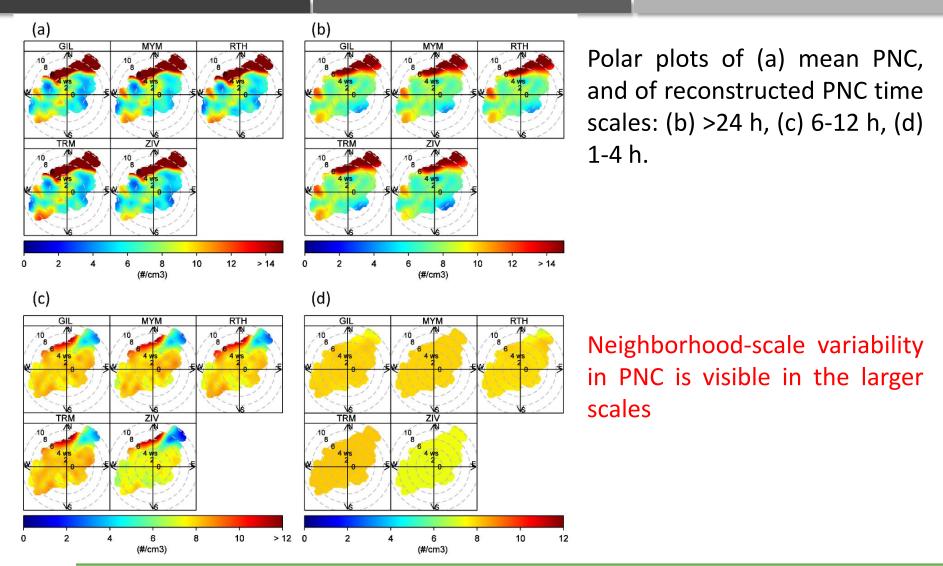
* LR to measurements by PCASP-X2 (DMT)



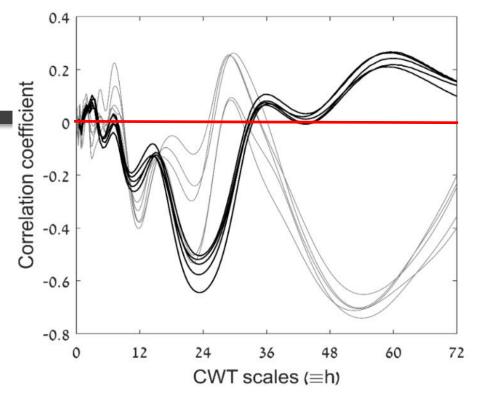
A network of 5 OPCs (Dylos), 150-300 m apart. 3 collocation periods (before, in between and after) & 2 deployment periods.


Signature of Human Activity?

Most of the spatial variability was found in the >95 percentile of the fine PNC



 \Rightarrow Is the variation related to anthropogenic activity (commute, commerce)?

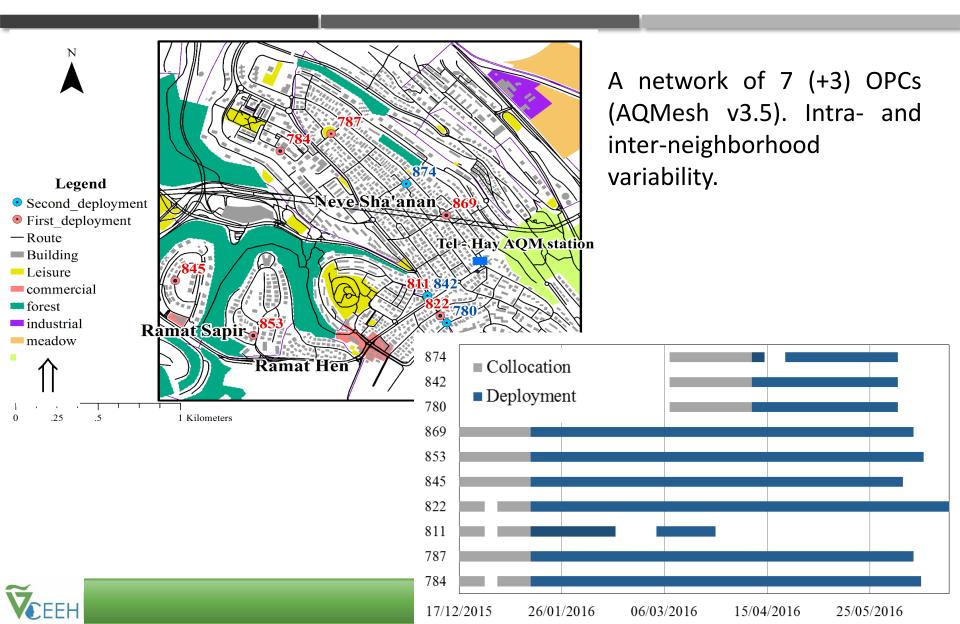


Does The Wind Field Result in Intra-Neighborhood Pollutant Variability ?

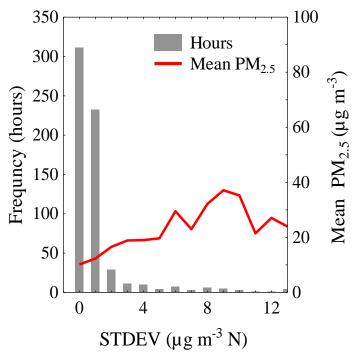
Correlations between CWT reconstructed PNC and wind speed time series (different lines = locations, black / gray = time period).

(similar to coherence analysis)

• For synoptic (t >48 h) time scales, correlations show strong temporal (seasonal) but small spatial variation.


positive correlations: long-range transport

negative correlations: wind speed effect on dispersion.


- For daily (24 h) and (to less extent) half-daily (12 h) time scales, significant negative correlations thermally driven dispersion processes (land-sea breeze, solar-driven vertical expansion/contraction of the ML ?)
- For <1 h time scales, correlation \rightarrow 0 turbulent mixing ?

2nd Example (PM_{2.5} and Fine PNC)

Focus on "Clean Days"

Inter-nodal variability (hourly records) among collocated OPCs (Dec 17, 2015 - Jan 14, 2016) and the corresponding mean hourly PM_{2.5}.

 \Rightarrow focus on "clean" days

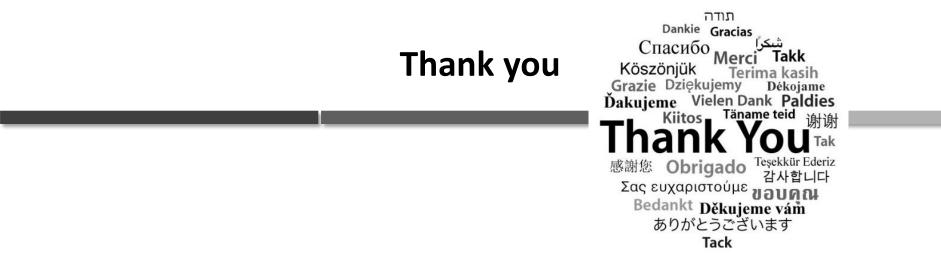
Variability of collocated OPC records before, during and after a dust storm (Dec 18-19, 2015).

Inner Neighborhood Variability is Evident

Inter-nodal variation during both collocation and deployment (Dec 2015 - May 2016).

Pollutant	Calibration	Period	No. hours	No. nodes	Mean	F-statistics	Mean CV (%)
PM _{2.5}	against hourly mean AQM PM _{2.5}	collocation	550	7	10.79	F(6,3430)=0.28	5.3
(µg m⁻³)		deployment	2128	7	11.84	F(6,12450)=50.80 🗲	7.6
PM _{2.5}	against hourly mean OPC PM _{2.5}	collocation	550	7	12.50	F(6,3430)=0.18	8.32
(µg m⁻³)		deployment	2128	7	11.79	F(6,10692)=27.47	12.41
PNC	against hourly mean OPC PNC	collocation	550	6	1245.8	F(5,2890)=0.27	7.31
(cm ⁻³)		deployment	2128	6	970.3	F(5,10790)=10.49	12.97

- \Rightarrow Use of WDESN revealed significant neighborhood-scale variability on top of the sensors' measurement noise
- ⇒ Potentially important for epidemiological studies (as they benefit from intersubject exposure variability)


What Affects Intra-Neighborhood Particle Variability

	(* = N.S.) PN		PNC (PNC (Calib. mean OPC)		PM _{2.5} (Calib. AQM)			PM _{2.5} (Calib. mean OPC)			
			No. hour s	Mean (cm⁻³)	F- statistics	Mean CV (%)	Mean (mg/m³)	F- statistics	Mea n CV (%)	Mean (mg/m³)	F- statistics	Mean CV (%)
		Winter highs	298	824.3	F(5,1635) = 2.96	10.79	10.42	F(6,1931) = 2.32	9.29	10.93	F(6,1931) = 2.35	11.21
	Synoptic condition	Red Sea Troughs	479	1101.6	F(5,257 1) = 2.08 *	13.46	10.09	F(6,3044) = 5.60	6.50	11.56	F(6,3044) = 3.72	14.24
		Winter storms	252	952.1	F(5,1369) = 12.14	14.76	10.03	F(6,1615) = 33.68	7.87	11.36	F(6,1615) = 26.66	15.56
	Wind direction	North - East	360	967.8	F(5,1944) = 3.59	12.21	10.0	F(6,2298) = 8.01	7.31	11.13	F(6,2299) = 5.04	13.17
		South	431	990.6	F(5,2338) = 2.94	12.20	10.36	F(6,2765) = 9.18	7.56	11.56	F(6,2765) = 6.71	13.30
	(°)	West	634	922.3	F(5,3546) = 3.59	13.78	10.01	F(6,4186) = 28.4	8.21	10.93	F(6,4186) = 19.68	14.24
		0.5-1	264	1158.2 5	F(5,144 0) = 1.99 *	15.75	10.98	F(6,1701) = 1.67 *	9.14	12.77	F(6,1701) = 1.48 *	16.21
		1.1.5	322	1094.3 1	F(5,1743) = 2.55	13.04	10.64	F(6,2064) = 3.66	7.79	12.3	F(6,2064) = 3.08	13.77
	Wind speed (m/s)	1.5-2	305	890.12	F(5,1650) = 2.09 *	11.92	9.77	F(6,1949) = 10.04	7.15	10.43	F(6,1949) = 6.18	12.79
		23	325	836.08	F(5,180 0) = 1.47 *	11.24	9.52	F(6,2121) = 14.38	6.95	10.06	F(6,2121) = 8.06	12.17
		35	219	847.70	F(5,1197) = 3.89	13.72	9.84	F(6,1414) = 17.78	8.28	10.4	F(6,1414) = 12.22	14.13
		>5	61	844.17	F(5,316) = 3.79	18.47	10.43	F(6,374) = 9.55	10.34	11.9	F(6,374) = 7.76	17.82

Summary

- AQ-WDESN technology carries a promise, however the technology is not matured for regulatory/ non-research quantitative applications.
- Nonetheless, it can be used **with caution** for qualitative/ educational/ demonstrational/ raising the public awareness purposes.
- AQ-WDESN is capable of capturing spatiotemporal pollutant variability (yet frequent field calibrations may be required to maintain consistent results).
- **No free lunch** AQ-WDESN data must pass severe QA/QC procedures for any (most?) uses (including citizen science).

Further reading:

- Moltchanov et al., Science of the Total Environment, 502:537–547, 2015.
- Fishbain et al., Science of the Total Environment, 575:639–648, 2017.
- Castell et al., Environment International, 99:293-302, 2017.
- Broday et al., Sensors, 17(10):2263-2280, 2017.
- Kizel et al., Environmental Pollution, 233:900-909, 2018.
- Etzion & Broday, J. Aerosol Sci., 117:118-126, 2018.

