Air quality measurements of volcanic air pollution: Using low-cost sensors to monitor a major AQ event <u>Jesse Kroll</u>¹, David Hagan¹, Benjamin Crawford¹, Colette Heald¹, Kathleen Vandiver², Ilene Grossman³, Elizabeth Cole³ #### Air quality measurements of volcanic air pollution: Using low-cost sensors to monitor a major AQ event <u>Jesse Kroll</u>¹, <u>David Hagan</u>¹, <u>Benjamin Crawford</u>¹, Colette Heald¹, Kathleen Vandiver², Ilene Grossman³, Elizabeth Cole³ ## Background: Air quality in Hawai'i area 10,400 km² pop. 187,000 Kīlauea Volcano: Largest point source of SO₂ in the U.S. (~1 Tg/yr) SO₂, PM_{2.5} (volcanic smog, or "vog") represent a local nuisance and health concern AQ monitoring stations run by DOH, NPS, USGS # Spatial, temporal variability of the vog data from Hawaii Dept. of Health Air Quality stations Our (original) objective: Set up a network of SO_2+PM monitors around the island, as a research testbed, community resource, educational tool #### ...but then.... #### Lower East Rift Zone (LERZ) eruption, beginning on 3 May 2018 ## AQ monitoring during the eruption Puna AQ station first lost power (5 May), then was lost to the lava \rightarrow no local AQ measurements Request by DOH, community partners for AQ sensors Sent several SO₂ sensors for use in Puna region (residential area, 10s of ppm SO₂) Need for additional monitoring throughout the island ## Hawai'i Multi-Pollutant Air Quality Sensor (HI-MPAQS) # Sensor deployment #### 20-27 May: - 30 MPAQS units - SO₂ calibration by coloration at DOH stations [Hagan et al., AMT 2018] - Deployed throughout the island David Hagan Ben Crawford # Challenges Major failure modes: - Loss of battery power - Loss (or lack) of 3G signal Calibration: how much is enough? Quantitative PM measurements (broad range of particle sizes; sulfate + high RH) **Ants** Hurricanes Lava #### Current network #### ...but then... early August 2018: Cessation of volcanic activity (cleanest air since 2007... possibly earlier?) ## Major lessons (for us) Community interest high (lack of available data), esp. among educators Interactions with government agencies AQ sensing for continual monitoring vs. sensing for emergency response: - less time to troubleshoot, iterate on designs - accuracy requirements (time for calibration, QA/QC) - expectations about power, communication - AQ events/emergencies can start, stop abruptly Need to be ready!