aeroqual

Low-cost air quality sensor network deployment and data analysis

<u>Kyle A. Alberti^{1,2}</u>, Geoff Henshaw¹, Hamesh Patel², Brandon Feenstra³, Berj Der Boghossian³, Vasileios Papapostolou³, Lita Lee^{1,2}, Jonathan Taylor¹, David E. Williams²

- 1. Aeroqual Ltd, Auckland, NZ
- 2. University of Auckland, Auckland, NZ
- 3. South Coast Air Quality Management District, Diamond Bar, CA, USA

Instrument Overview

Aeroqual AQY

aeroqual.com

Project Overview

Instrument Deployment

100 instruments deployed to-date in Southern California

- Distributed in 4 primary regions
 - Riverside/San Bernardino (~50)
 - Central Los Angeles (~25)
 - Imperial County (~15)
 - Catalina Island (4, 2x2 co-located)

Deployed in 4 batches

- 1st November 2017
- 2nd December 2017
- 3rd February 2018
- 4th March/April 2018

Co-locations:

- O₃ reference: 15 sites
- NO₂ reference: 15 sites
- PM_{2.5} reference: 3 sites

Instrument Locations

Southern California Network

aeroqual.com

Site Photos

Short Term Instrument Performance – PM_{2.5}

- Three instruments co-located at the same reference site
- Hourly-averaged data over a period of 3 months

	R ²	Slope	Intercept
vs Reference	0.831	0.91	-1.76
Between Instruments	0.987	0.99	0.27

Long Term Instrument Performance - PM_{2.5}

Linear Correlation

- 24h-averaged data, statistics calculated by month
- PM sensors not site calibrated
- Slope and intercept stable over time
- Good R² for 5-6 months

Network Visualization

Network Data:

- AQY data pushed to cloud server in real-time
- Heatmap generated using inversedistance weighted interpolation (via R – gstat, raster, Leaflet)
- Wind data downloaded via MesoWest API (https://mesowest.utah.edu/, https://synopticlabs.org/api/mesonet)
- Wind data interpolated as indicative indication of conditions

aerogual.com

Event Detection

10-minute data averaging

High Spatial and Temporal Resolution

- Higher time resolution provides more information about the event
- Higher density detects more isolated events

What Next?

With a large deployed network - developing methods:

- How do we remotely validate data from an instrument?
- How do we remotely calibrate the network?
- How do we analyse data from a network like this?

Acknowledgements

Aeroqual Ltd

- Dr. Geoff Henshaw
- Dr. Lita Lee
- Dr. Elaine Miles
- Jonathan Taylor

University of Auckland

- Prof. David Williams
- Hamesh Patel
- Dr. Georgia Miskell

South Coast Air Quality Management District

- Brandon Feenstra
- Berj Der Boghossian
- Dr. Vasileios Papapostolou
- Dr. Andrea Polidori

