

CAPTURING THE EFFECT OF DATA COLLECTION PROTOCOL ON LAND-USE REGRESSION MODELS AND EXPOSURE SURFACES FOR ULTRAFINE PARTICLES, BLACK CARBON, AND NOISE

Laura Minet, Rick Liu, Marie-France Valois, Junshi Xu, Scott Weichenthal, and Marianne Hatzopoulou

marianne.hatzopoulou@utoronto.ca

Land use regression (LUR)

Land use regression (LUR)

Land use regression (LUR)

Exposure surface

Spatial variability and spatial coverage are important

Advances in portable air pollution devices enabled denser sampling campaigns

UTTRI

METHODOLOGY

RESULTS

Mobile sampling achieves unparalleled spatial coverage

UTTRI

METHODOLOGY

RESULTS

Does the data collection protocol influence LUR models and associated exposure surfaces?

UTTRI

INTRODUCTION

METHODOLOGY

RESULTS

Short-term exposure estimation

Personal

Photo credit: Tyler Irving/U of T Engineering

Mobility-based

GPS intersecting exposure surface

How do mobility-based exposures compare with personal exposures?

UTTRI INTRODUCTION

METHODOLOGY

RESULTS

Methodology

1. Ultrafine Particles (UFP) and Black Carbon (BC) levels

❖ 92 fixed points: Average sampling:

- 102 minutes
 - 5 visits
- 270 km of cycling routes/3,095 road segments:

Average sampling:

- 121 seconds
- 5 visits

Time block	Time
1	7 am to 11 am
2	11 am to 3 pm
3	3 pm to 7 pm

2. Panel study

- **❖** 1 visit:
 - 6 hours / day
 - 2 hours outdoors
- **❖** Total:
 - 43 participants
 - 63 visits

UTTRI INTRODUCTION

/IFTHODOLOGY

RESULTS

3. Equipment

- **GPS**:
 - Garmin or Mobile app Strava
 - Time resolution: 1s
- **❖** <u>UFP:</u>
 - DiscMini
 - Time resolution: 1s
- **❖** BC:
 - MicroAethalometer
 - Time resolution: 30s (average of 30s)

UTTRI INTRODUCTION METHODOLO

RESULTS

Collocation UFP

(b) After correction

LUR model development

❖ A leave one out cross-validation (LOOCV) was applied to choose the best predictor variables in order to minimise the Root Mean Square Error (RMSE)

Results

Average UFP and BC concentrations recorded

UTTRI

INTRODUCTION

METHODOLOGY

RESULTS

LUR models

	In(UFP)		In(BC)	
	Fixed points	Cycling	Fixed points	Cycling
Adjusted R ²	0.405	0.430	0.525	0.434

- ❖ R² ranges between 0.405 and 0.525
- ***** Various predictors

NOISE (LAeq)	Model 1	Model 1 modified
Adjusted R ²	0.6	0.44
N. of predictors	14	10

Exposure surfaces - UFP

(a) Cycling model

(b) Fixed points model

Pearson correlation coefficient: 0.235

 UTTRI
 INTRODUCTION
 METHODOLOGY
 RESULTS
 CONCLUSIONS

Exposure surfaces - BC

Pearson correlation coefficient: 0.5

Exposure surfaces – Noise (LAeq)

Comparison of the exposures - UFP

UTTRI

INTRODUCTION M

METHODOLOGY

RESULTS

Comparison of the exposures - BC

UTTRI

INTRODUCTION

METHODOLOGY

RESULTS

Comparison of the exposures - Noise

Conclusions

Different data collection protocols

Different LUR models and dissimilar exposure surfaces

Different short-term exposure estimations

NO₂ surfaces Dispersion-1 (a) Dispersion-2 (b) LUR-1 (c) LUR-2 (d)

UTTRI INTRODUCTION

METHODOLOGY

RESULTS

$OR\ for\ Prostate\ Cancer\\ NO_2\ surfaces\ Dispersion-1\ (a)\ Dispersion-2\ (b)\ LUR-1\ (c)\ LUR-2\ (d)$

