Interpreting On-Road Concentration Measurements

NICO SCHULTE, YANJU CHEN, STEVE MARA, ABHILASH VIJAYAN, JORN HERNER, BART CROES

CALIFORNIA AIR RESOURCES BOARD, 1001 | ST, SACRAMENTO, CA 95814

Project Partners

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

Background

Problem:

• Routine regional monitoring may not capture air pollution issues due to local sources that cause exposure burden in some communities

Solution:

- Use a mobile monitor to "fill in the gaps"
 - Mobile monitor is used to screen for areas with high concentrations that may be caused by local sources
- Follow up with other tools to quantify source emissions

Objectives

- Develop measurement and analysis schemes to study neighborhood level air pollution and sources
- Identify high pollution areas (hotspots)

Apte, J.S., Messier, K.P., Gani, S., Brauer, M., Kirchstetter, T.W., Lunden, M.M., Marshall, J.D., Portier, C.J., Vermeulen, R.C. and Hamburg, S.P., 2017. High-resolution air pollution mapping with google street view cars: exploiting big data. *Environmental Science & Technology*, *51*(12), pp.6999-7008.

Alexeeff et al., High-resolution mapping of traffic related air pollution with Google street view cars and incidence of cardiovascular events within neighborhoods in Oakland, CA. *Environmental Health* (2018) 17:38. https://doi.org/10.1186/s12940-018-0382-1

c. Description of identified hotspots

ID	BC	NO	NO ₂	N _{days}	Plausible sources / hypotheses	
А	+	2	+	38	Truck traffic and intersection	
в	+	+	+	29	Metals recycling business	
С	+	+	+	41	Cement plant and automotive shop	
D	+	×	~	28	Warehouses with forklifts	
Е	+	~	+	23	Car dealer, vehicle "smog check"	
F	+	×	~	17	Near recycling business; trucks; near I-880 frontage road	
G	+	+	+	26	Towing lot, residential "hangout" area	

BC

(µg m⁻³) ■ 2.0

Methods

Instrumented vehicle measures concentrations during drives on multiple days through "polygons" (communities) within the study domain

Repeated samples are **aggregated within 30m** grid cells over multiple measurement days

~20 grid visits completed in 6 months

Methods - Measurement system

Using medium/lower cost instruments

Daily and weekly instrument checks are performed by driver and technician

Pollutant	Instrument
PM ₁ , PM _{2.5} , PM ₄ , PM ₁₀	TSI DRX
Ultrafine Particle Number	Testo DiSCmini
Black Carbon	MicroAeth AE51
Nitrogen Oxides	2b Technologies 410
Total VOC	RAE Systems ppbrae3000
Carbon Dioxide	LI-COR LI-820
Methane, Ethane	Picarro gas scouter

Measurement System - Precision _{Stationary}

Two measures to quantify precision:

• Standard deviation of normalized differences:

 $\text{COV} = \left(\frac{1}{n}\sum \left(\frac{d_i}{\sqrt{2}\overline{c_i}}\right)^2\right)^{1/2}$

• Standard deviation of differences within concentration bins: STD = $\left(\frac{1}{n}\sum_{i=1}^{n}\left(\frac{d_i}{\sqrt{2}}\right)^2\right)^{1/2}$

 d_i – Differences, \overline{C}_i - Average

Averaging Time	Pollutant	COV	STD*
Stationary	PM _{2.5}	21.0 (12.6 – 29.1) %	3.11 μg m ⁻³
Stationary	BC	13.1 (11.3 – 14.8) %	0.200 μg m ⁻³
- 60 mm	UFP	3.8 (2.6 – 5.2) %	1890 cm ⁻³
Mahila 1	PM _{2.5}	22.5 (21.5 – 23.4) %	1.35 μg m ⁻³
	BC		4.06 μg m ⁻³
sec	UFP	5.3 (4.5 – 6.2) %	1650 cm ⁻³

* Using 0-50th percentile of observations

Top: Time series of collocated 1 minute (left) and 1 second (right) average UFP. **Bottom:** Normalized (by average concentration) differences of UFP. Vertical black line divides collocation on two different days

Data Interpretation Hotspots

Interpreting Mobile Observations

Observations are impacted by "background" sources and "local" sources within the study domain

- We analyze the concentration enhancement caused by local sources
- Mobile observations are a "snapshot"
- We aggregate repeated observations at the same location to derive stable values (of enhancement and background)

Mobile Background

We needed estimate a background concentration to interpret mobile observations

We used the 5th percentile of observations over a 10 minute window as an estimate of background Analysis presented today uses enhancements

Mobile Background

We compared mobile background with measurements made at a stationary upwind location

Results provide evidence that mobile background is a useful measure of background

Mobile background drive route during comparison with stationary measurements

Comparison of 10 minute average UFP at stationary upwind monitor with UFP mobile background.

▲ - Stationary monitor

Hotspot Method

The hotspot method selects grid cells that are associated with higher concentrations during the measurement period

Hotspot Example

Example of UFP and CH₄ hotspots in two polygons UFP hotspots are likely caused by traffic emissions Some CH₄ hotspots are nearby facilities

Next Steps - Mapping

Mapping – Concentration Variation

To present concentration "maps" we must estimate the variation within grid cells

Useful model for concentration variance: coefficient of variation (COV) is constant over the domain

Some pollutants have increasing COV at higher concentrations

• Data described by skewed distribution - caused by dispersion and variation of emissions

Discussion and Conclusions

Hotspot method is useful to identify locations associated with high concentrations

Mobile background method provides a useful measure of background concentration

Coefficient of variation for UFP varies from about 1 - 6, and ratio of standard error to mean for a grid cell over 20 repeated visits varies from about 22% - 134%

Potential biases: Measurements are made on roads in traffic – observations are potentially biased due to following vehicles

Questions?

Nico Schulte nico.schulte@arb.ca.gov 916-327-0599