Application of PM$_{2.5}$ Low-cost-sensors to Assess Community Sources

Shih-Chun Candice LUNG123
Tzu-Yao WEN1, Wen-Cheng Vincent WANG1, Chun-Hu LIU1, Shu-Chuan HU1

1Research Center for Environmental Changes, Academia Sinica, Taiwan
2Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
3Institute of Environmental Health, National Taiwan University, Taipei, Taiwan
Acknowledgements

This project was funded by the Academia Sinica (AS) under grant AS-104-SS-A02 and we also appreciate Dr. Ling-Jyh Chen in the Institute of Information Science of AS for the development of AS-LUNG (Academia Sinica-LUNG)

- AS-LUNG (Academia Sinica- LUNG)
 - Outdoor version (AS-LUNG (O))
 - Portable version (AS-LUNG(P))
Set-up of AS-LUNG(O) in the community

- Solar panel
- PM sensor
- CO₂ sensor
- Temperature/RH sensor
- Water-proof housing
- System control main board with RTC (Time) module & SD card
- Data transmission element
- Power supply element
- Wireless transmission antenna

2.2-2.8m
Community Culture-related Air-Pollutant Sources in Asian Cities

Asian style restaurant

Night market

Traffic

Temple

Hair salon

Car salon

PM$_{2.5}$ (WHO classified as a human carcinogen)

VOCs

PAHs

NO$_2$

SO$_2$

many others

Candice Lung
Motivation

• Higher *intra-urban variability* in Asian residential communities than those in western countries
 – various PM$_{2.5}$ sources, such as *restaurants and home factories*

• High *exposure* levels to residents due to *community sources*

• Objectives:
 – to evaluate the *applicability of AS-LUNG(O)*
 – to *quantify PM$_{2.5}$ contributions from those community sources*
Comparison with GRIMM

Table 1 PM$_{2.5}$ comparison in the laboratory and in the field

$\text{AS-LUNG(O)} = \text{slope*GRIMM} + \text{intercept}$

<table>
<thead>
<tr>
<th></th>
<th>PM$_{2.5}$-Slope</th>
<th>PM$_{2.5}$-Intercept</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>In lab (Sensor=40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (STD)</td>
<td>2.33 (0.22)</td>
<td>-1.23 (1.65)</td>
<td>0.95 (0.04)</td>
</tr>
<tr>
<td>Max, Min</td>
<td>2.73, 1.86</td>
<td>2.92, -3.91</td>
<td>0.98, 0.80</td>
</tr>
<tr>
<td>In field (Sensor=11 for 3 days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (STD)</td>
<td>2.01 (0.26)</td>
<td>3.66 (5.27)</td>
<td>0.88 (0.10)</td>
</tr>
<tr>
<td>Max, Min</td>
<td>2.39, 1.66</td>
<td>9.49, -2.01</td>
<td>0.97, 0.68</td>
</tr>
</tbody>
</table>

- Lab: T: 18.1-34.9C, RH: 56.3-97.4%, PM$_{2.5}$: 3-150ug/m3
- Field: T:25.9-40.9C, RH: 43.4-93.8%, PM$_{2.5}$: 3.9-30.1ug/m3
Monitoring Strategy

• **AS-LUNG-outdoor (AS-LUNG(O))**, a PM$_{2.5}$ sensor device with a solar panel and water-proof housing, was used for this work.
 – PM$_1$, PM$_{2.5}$, CO$_2$, temperature, and relative humidity with 1-min resolution
 – Wireless transmission plus SD-card to avoid data loss

• **10 AS-LUNG(O) devices** were placed at 2.5 meters above ground in Taiwanese communities to assess source contribution

• **one AS-LUNG(O) at 10 meters** above ground to assess ambient levels (high-level site)

• **July 1-28 and December 1-31, 2017**

• **evaluated against GRIMM in the laboratory and fields**; the measurements were converted accordingly
■ This community is in the center of Taiwan island. *Within 1 km²*
■ Site C-1 to C-10 (street side) and H (high-level) are community sites where AS-LUNG(O) sensors set-up
■ AS-LUNG(O) usually *3-5 meters* from one or two community sources (traffic, vendor, temple, store, etc)
Temporal variation of PM$_{2.5}$ in one community site (5-min averages)
<table>
<thead>
<tr>
<th>Date</th>
<th>High-level</th>
<th>C1 – C10</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>17.5±8.6</td>
<td>18.0±9.3</td>
</tr>
<tr>
<td>December</td>
<td>29.3±10.8</td>
<td>37.4±17.3</td>
</tr>
</tbody>
</table>

Note: data were 5-min means
hourly PM$_{2.5}$ levels at street sites compared to those at high-level site

- **Summer:** ratio means among different sites were 1.04-1.27
- **Winter:** ratio means among different sites were 1.07-1.62
5-min PM$_{2.5}$ at street sites compared to the 5-min at high-level site

Summer: ratio means among different sites were 1.05-1.29, with a 5-min maximum of 35.5

Winter: ratio means among different sites were 1.08-1.63 with a 5-min maximum of 21.6

Moreover, the highest 1-min level at a site near vendors and traffic was 100 times of that at the high-level site
5-min PM$_{2.5}$ at street sites compared to those at background street site

- **Summer:** ratio means among different sites were 1.10-1.38 with a 5-min maximum of 44.6
- **Winter:** ratio means among different sites were 1.06-1.51 with a 5-min maximum of 19.5
PM$_{2.5}$ Increments from Community Sources
(regression with dummy variables, adj. $R^2=0.75$)

| Variable | Estimate (ug/m3) | Std. Error | Pr(|t|) |
|---------------------------------|---------------------|------------|----------|
| Intercept | 12.8 | 0.333 | <2e-16 |
| H_PM$_{2.5}$ (high-level) | 1.22 | 0.003 | <2e-16 |
| Wind Speed | 0.13 | 0.073 | 0.0757 |
| temperature | -0.41 | 0.006 | <2e-16 |
| RH | -0.09 | 0.003 | <2e-16 |
| School | 1.83 | 0.132 | <2e-16 |
| Vehicle (wide street) | 1.72 | 0.119 | <2e-16 |
| **Vehicle (narrow street)** | **3.98** | **0.135** | **<2e-16** |
| **Store** | **4.49** | **0.124** | **<2e-16** |
| Gas Station | 2.12 | 0.121 | <2e-16 |
| **Temple** | **2.67** | **0.111** | **<2e-16** |
| Vendor (Fried Chicken) | 1.64 | 0.175 | <2e-16 |
Take Home Messages

• Our results showed the applicability of AS-LUNG (O) in the field and significant contribution from community PM$_{2.5}$ sources

• Potential applications of low-cost PM sensors:
 – For residents to take actions to prevent exposure and health risks
 – For government agencies to formulate control strategies to reduce personal exposure levels